Topology of the C-Terminal Tail of HIV-1 gp41: Differential Exposure of the Kennedy Epitope on Cell and Viral Membranes
نویسندگان
چکیده
The C-terminal tail (CTT) of the HIV-1 gp41 envelope (Env) protein is increasingly recognized as an important determinant of Env structure and functional properties, including fusogenicity and antigenicity. While the CTT has been commonly referred to as the "intracytoplasmic domain" based on the assumption of an exclusive localization inside the membrane lipid bilayer, early antigenicity studies and recent biochemical analyses have produced a credible case for surface exposure of specific CTT sequences, including the classical "Kennedy epitope" (KE) of gp41, leading to an alternative model of gp41 topology with multiple membrane-spanning domains. The current study was designed to test these conflicting models of CTT topology by characterizing the exposure of native CTT sequences and substituted VSV-G epitope tags in cell- and virion-associated Env to reference monoclonal antibodies (MAbs). Surface staining and FACS analysis of intact, Env-expressing cells demonstrated that the KE is accessible to binding by MAbs directed to both an inserted VSV-G epitope tag and the native KE sequence. Importantly, the VSV-G tag was only reactive when inserted into the KE; no reactivity was observed in cells expressing Env with the VSV-G tag inserted into the LLP2 domain. In contrast to cell-surface expressed Env, no binding of KE-directed MAbs was observed to Env on the surface of intact virions using either immune precipitation or surface plasmon resonance spectroscopy. These data indicate apparently distinct CTT topologies for virion- and cell-associated Env species and add to the case for a reconsideration of CTT topology that is more complex than currently envisioned.
منابع مشابه
Detailed Topology Mapping Reveals Substantial Exposure of the “Cytoplasmic” C-Terminal Tail (CTT) Sequences in HIV-1 Env Proteins at the Cell Surface
Substantial controversy surrounds the membrane topology of the HIV-1 gp41 C-terminal tail (CTT). While few studies have been designed to directly address the topology of the CTT, results from envelope (Env) protein trafficking studies suggest that the CTT sequence is cytoplasmically localized, as interactions with intracellular binding partners are required for proper Env targeting. However, pr...
متن کاملFolded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region
HIV is an enveloped virus and fusion between the HIV and host cell membranes is catalyzed by the ectodomain of the HIV gp41 membrane protein. Both the N-terminal fusion peptide (FP) and C-terminal membrane-proximal external region (MPER) are critical for fusion and are postulated to bind to the host cell and HIV membranes, respectively. Prior to fusion, the gp41 on the virion is a trimer in non...
متن کاملMembrane structure correlates to function of LLP2 on the cytoplasmic tail of HIV-1 gp41 protein.
Mutation studies previously showed that the lentivirus lytic peptide (LLP2) sequence of the cytoplasmic C-terminal tail of the HIV-1 gp41 envelope protein inhibited viral-initiated T-cell death and T-cell syncytium formation, at which time in the HIV life cycle the gp41 protein is embedded in the T-cell membrane. In striking contrast, the mutants did not affect virion infectivity, during which ...
متن کاملSynthesis, enhanced fusogenicity, and solid state NMR measurements of cross-linked HIV-1 fusion peptides.
In the HIV-1 gp41 and other viral fusion proteins, the minimal oligomerization state is believed to be trimeric with three N-terminal fusion peptides inserting into the membrane in close proximity. Previous studies have demonstrated that the fusion peptide by itself serves as a useful model fusion system, at least to the hemifusion stage in which the viral and target cell lipids are mixed. In t...
متن کاملSmall-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins.
When interacting with the CD4 receptor, the HIV gp120 envelope glycoprotein undergoes conformational changes that allow binding to the chemokine receptor. Receptor binding is proposed to lead to conformational changes in the gp41 transmembrane envelope glycoprotein involving the creation and/or exposure of a coiled coil consisting of three heptad repeat (HR) sequences. The subsequent interactio...
متن کامل